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Abstract—A hybrid numerical method combining the application of the Laplace transform technique and

the finite-difference method (FDM) or the finite-clement method (FEM) is presented for non-linear

transient thermal problems. The space domain in the governing equation is discretized by FDM or FEM

and the non-linear terms are linearized by Taylor's series expansion. The time-dependent terms are removed

from the linearized equations by Laplace transformation, and so, the results at a specific time can be

calculated without step-by-step computation in the time domain. To show the efficiency and accuracy of
the present method several one-dimensional non-linear transient thermal problems are studied.

INTRODUCTION

IT 1S OF great importance in most engineering and
science applications to analyse the transient thermal
response within a solid with temperature-dependent
thermal properties or within a structure subjected to
a radiative boundary condition. The governing equa-
tions with either the temperature-dependent thermal
properties or the radiative boundary condition will
become nonlinear. Owing to no general mathematic
theory to analytically solve non-linear partial differ-
ential equations, various approximate methods [1-6]
have been published to find approximate solutions.
To find a more accurate solution, numerical methods
should be employed. Up to date, the finite-element
method (FEM), the finite-difference method (FDM),
and the boundary-element method (BEM) are com-
monly used. In the application of those numerical
methods to transient problems, the time derivative
is often dealt with by the modified Crank—Nicolson
method [7], the time-integration method [8] or other
methods [9, 10]. However, the major drawback of
these methods is that the calculation must be per-
formed at each time step until the specific time is
reached and it will cost a great deal of computer time
to obtain a long-time solution for these methods.

In the present study, the hybrid application of the
Laplace transform method and the FEM (or the
FDM) is used to analyse the non-linear transient heat
conduction through a solid. This hybrid method has
been proved to be very powerful for linear transient
problems [11, 12]. A few works have been carried out
on the method of the Laplace transform for non-linear
transient heat conduction problems. Tamma and
Railkar [13-15] applied the hybrid transfinite element
methodology to solve non-linear transient problems.
Based on the assumptions that (1) the thermal prop-
erties are constant within an element, and (2) the
element thermal properties depend only on the aver-
age element temperatures, the thermal-equilibrium
equations in the transformed domain obtained by
them are nonlinear. However, these assumptions are

reasonable for lower order finite elements with simple
temperature variations [16]. Based on this reason, the
present study applies Taylor’s series expansion to lin-
earize the non-linear terms. It is seen that the thermal-
equilibrium equations in the transformed domain are
not nonlinear, but linear. Owing to no time step in the
present hybrid method, the results at a specific time
can be calculated without iteration at each time step.
To show the efficiency and accuracy of this hybrid
method for such problems, three one-dimensional test
examples consisting of (1) a hollow sphere subjected
to a convective—radiative boundary condition, (2) a
slab with temperature-dependent thermal con-
ductivity and specific heat, and (3) a conductive-con-
vective-radiative fin with temperature-dependent
thermal properties are analysed. A comparison of the
hybrid finite-element method solutions (FES) and the
hybrid finite-difference solutions (FDS) with the
results obtained by a conventional finite-difference
method using the Crank—Nicolson algorithm is made.
It can be seen that there is no remarkable difference
between them.

DESCRIPTION OF THE PROPOSED HYBRID
SCHEME

Consider a general one-dimensional transient non-
linear thermal problem described by the following
differential equation:

D(Tx.)=0 inQ m
with the boundary condition
B(T.x,n =0 onR (2
and the initial condition
KT, x,0)=0 3

where D and B are non-linear differential operators,
Q the domain of the problem and R its boundary.
The application of the present hybrid numerical
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operator
D*  non-linear algebraic equation

D linearized algebraic equation

D Laplace transformed algebraic equation
{f}  global force vector

h heat transfer coefficient

I initial condition

A°(0) dimensionless thermal conductivity

[K]  global conduction matrix

thermal conductivity

kg reference thermal conductivity at 7= 0

L length of the fin

/ distance between two nodes

N pyramid function

n total number of nodes

P perimeter of the fin cross-section

p parameter in the free convective heat
transfer coefficient

R real domainor = R, — R

R, inner radius of the hollow sphere

R, outer radius of the hollow sphere

radius of the sphere

dimensionless radius

Laplace transform parameter

temperature

previous iterative temperature

Laplace transformed temperature

global temperature vector

’.:]"Jl’ﬂl‘*]“ > o=

NOMENCLATURE
A cross-sectional area of the fin { time
B boundary differential operator IR specific time
Bi Biot number r,w free parameters
b thickness of the slab X space coordinate
%(f)) dimensionless specific heat e dimensionless space coordinate.
C,, reference specific heatat 7= 0
D transient conduction differential

Greek symbols

f temperature coefficient for the thermal
conductivity

» temperature coefficient for the specific
heat

€ cmissivity

0 dimensionless temperature

K constant in equation (26)

/ constant tn equation (27)

& fin paramecter

P density

G Stefan—Boltzmann constant

T dimensionless time

© reference thermal diffusivity ratio,
%o1/%02

Q domain of the problem.

Other symbols
R boundary of the problem
3 tolerance error.
Subscripts

2,4 environment

b fin base

c cffective sink

i ith node

i jth node

w wall.

method to find the solution of equations (1)—(3) can
be divided into the following steps.

(1) Discretize the governing equation

Equations (1) and (2) can be discretized cither by
the Galerkin finite-clement method which approxi-
mates the temperature distribution 7 on the interval
[x; 1 x]as

Tx,) =N, (O)T, +NOT,+ N, ()T, (4)
where N (x), kK =j—1, j. j+ 1 are the pyramid func-
tions defined by

X=Xy

/ = xe[xe 1. x]

Nelx) = < (5)
' el

0 clsewhere

and / denotes the distance between two nodes and

gives the discretized heat conduction equation in the
form

J D(T.x, )N, dx =0 (6)
Q

or by the finite-difference method. After discretizing
the governing equations, the following set of non-

linear algebraic equations can be obtained :
D¥T,.x,0)=0 j=12..., n—1.n (7)

where # is the total number of nodes and d is defined
as

1.2 when j =1
d=<j—1.jj+1 when;j=223,....n—1. (8)
n—1l.n when j=n

(2) Linearize the non-linear terms
The application of the Laplace transform technique
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is only restricted to the linear system, so that the non-
linear terms in equation (7) must be linearized. In the
present study, Taylor’s series expansion is applied to
linearize the non-linear terms. Let f(n,, 75,..., %)
be a many-times differentiable non-linear function of

His Banens and #,,. Then its Taylor’s series expansion
is given as
FOronse o) =00 02000000,

m b}

[ _ -
+3, ;gy?./(nm?z.».‘,f:m)(m—m) ©®)
R S 1
where the overbar denotes the previously iterated
solution. Substituting equation (9) into equation (7)

can yield the following linear algebraic equations:
(T, T, X, =0. (10)

(3) Remove the time-dependent terms

In order to remove the time-dependent terms from
equation (10), the Laplace transform technique is util-
ized. The Laplace transform of a real function g(r)
and its inversion formula are defined as

3(9) = L1g(0] = J e vgnde (1)
and
(r+in
g =2 Gol=52] egeds 12)

where s = v+iw, v, we R.
The transformed form of equation (10) can be writ-
ten as

ﬁ(’fvm T:/,,\‘,-“Y) =0. (13)

(4) Solve the transformed equation
Equation (13) is a vector-matrix form equation of
the following type:

(KUT} = {f} (14)
where [K] is an (nxn) band matrix with complex
numbers, {7} an (1 x 1) vector representing the trans-
formed nodal temperature and {f} an {nx 1} vector
representing the forcing terms. Note that equation
{(14) is a linear equation. An initial temperature dis-
tribution T(x, 1.} at the specific time ¢, is guessed and
then [K] and {f} can be calculated. The double direct
Gaussian-elimination algorithm is used to solve {7}
and the numerical inversion of the Laplace transform
technique [17-19] is applied to invert the transformed
result to the physical quantity {T}. These updated
values of {T} are used to calculate {K} and {f} for
iteration. This computational procedure is performed
repeatedly until a desired convergence is achieved.
Equation (14) derived by Tamma and Railkar [{3~
15] is nonlinear. They solved the system of non-linear
equations using the Newton-Raphson method.
According to the comment of Shih [20], the Newton—
Raphson method converges rapidly if the initial guess
lies within the vicinity of the solution. It will diverge,
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however, if the starting solution cannot be well
guessed.
An iterative solution is said to be convergent if

A <3 asj=1,2....,n

i

(15)

where the superscript k& denotes the kth iteration and
3 the tolerance error. In the present study, the first
iteration values of 7, are set to zero and the tolerance
error 3 is chosen as 10™%.

ILLUSTRATIVE EXAMPLES

In the following, three kinds of examples are studied
to illustrate the applicability of the present hybrid
numerical method to non-linear transient thermal
problems. In each example, the 11-node modelling is
used for both FDM and FEM and the numerical
inversion of the Laplace transform proposed by
Honig and Hirdes [19] is employed. The comparative
results are obtained by the conventional finite-differ-
ence method using the Crank—Nicolson algorithm. To
obtain more accurate comparative results, 21 nodes
and a time step Ar=0.01 are chosen. All the
computation is performed on a PC with an 80386
microprocessor and the program is written in
FORTRAN.

Example | : a hollow sphere with a convective—radiative
boundary condition

In some engineering applications, hollow-spherical
structures such as reservoirs are used and a con-
vective-radiative heat transfer usually occurs between
the structure surface and the environment. This exam-
ple studies a hollow sphere with constant thermal
properties which is subjected to a convective-radiative
boundary condition at the outer surface. The dimen-
sionless form of the governing equations describing
the transient thermal response of the sphere is given

by
; 2 (a0
ool é(f‘f) (16a)
81 A\ &
0=0 at:=#, (16b)
20 _
E:cu(1—04)+31(l—()) ate=4, (l6¢)
=0 att=0 (16d)
where 0=T/T,, +=r[{R,—R)=r/R, t1=kytf

RpoCp()’ %1 = Ri;iR7 gg{) = RU;R’ w = RSGT; flk(}a
Bi = Rhjk,, R, is the inner radius, R, the outer radius,
and 7, the environment temperature. Equations
(16) can be solved by the scheme described in
the above section and the non-linear term shown in
equation (16¢) is linearized as

0; = 40;0,—30; {(n

where §, denotes the previously iterated temperature
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FiG. 1. A comparison of the temperature distribution for
various 1.

at» = A,. Figure | shows a comparison of the present
hybrid numerical solutions with the results given
by the finite-difference method using the Crank—
Nicolson algorithm for the case #, = 0.5, #, = 1.5,
w=1, and Bi=1. It can be seen that there is no
remarkable difference between them. Moreover, the
iteration is needed only at the outer-surface tem-
perature at the specific time. The iterative procedures
are finished until the desired convergence is reached.
However, the application of the Crank—Nicolson
algorithm must iterate all the nodal values within the
solid at each time step. In the present computation,
four or five iterations are needed. The CPU time (PC
with 80386 microprocessor) takes about 5 s to obtain
a convergent solution for any specific dimensionless
time.

Example 2 a slab with temperature-dependent thermal
properties

This example considers a single slab with tem-
perature-dependent thermal conductivity and specific
heat. The dimensionless form of the governing equa-
tions are given as

o0 ¢ Y
A0 Pt H(0) ;, (18a)
=1 at.=0 (18b)
0=0 at..=1 (18¢)
=0 att=0 (18d)

where 0 = T/T,,, .» = xjb, 1 =kot/h’p,C,, b is the
thickness of the slab, and 7, the wall temperature.
The linear variation of the thermal conductivity and
specific heat with temperature is assumed and they
can be expressed as

C(0) =1+70 and #(0)=1+50. (19)
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Applying the FDM to the right-hand side of equation
(18a) gives

¢ cl 1
(,\4, (]"‘/;()) (,(/ = /2 (()/ 1_2()/+()/* ‘)
I

WE

+ 07 200407 (20)
The non-linear terms 0° can be linearized, using equa-
tion (9), into the following form :

0° =200-0". (21)

The left-hand side of equation (18a) can be linearized
by the following process :

o0 ¢ v ¢
% (0) A= A [j “(n) d’?] = o [E()]  (22)

where E(0) is a non-linear function. Then E(0) can
be linearized. using equation (9), into the following
form:

E(()):E((T){(fbﬁ((})} (O-0. 23

0

Substituting cquation (23) into cquation (22) yields
the lincarized form as

a0 co

%(0) 4= € (0) or (24)

Thus, by the present hybrid FDM, cquation (18a)
can be written as

1 _ ~ 2 -
|:/z(l+/mi I)}(): l+|:/‘(|+ﬁ0i)

I D - -
— (1 +;-(),.)s:| 0+ [[_, (L+p0., I):IOH |

g
= jllzﬁ(()I~ 1 “20,' +0:_+ Do (25)

When the hybrid FEM is used, equation (18a) is
cxpressed as

I - s 1 -2 -
|j/3(l+/f0, |)“(\)(l+’/0,)J0, )‘*‘I:/”: (1+0))

S8

s ~ |~ 1 - N ~ |~
— ‘(l+‘,’(),):|0,+[13“4‘/;0”|)“g(l+)'0f)](),u

(%)

g - o m
= 52, (07 =207 +02 ).

(26)

The comparison of the present numerical solutions
with the results given by the finite-difference method
using the Crank—Nicolson algorithm is shown in
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Table 1. A comparison of the resultsfory = 0.5, f = 1.0 and
various 1
7 =0.1 =10
Crank-~ Crank~

»  FDM FEM Nicolson FDM FEM Nicolson

0.2 0.7341 0.7348 0.7337 0.8439 0.8439 (0.8439
0.4 04710 04718 04705 06733 0.6733 0.6733
0.6 02510 0.2509 0.2513 0.4832 04832 0.4832
0.8 0.0993 0.0986 0.1003 0.2649 0.2649 0.2649

Table 2. A comparison of the resuits for t = 0.5, § = 0.5 and
various y
o=—05 y=10

Crank— Crank-
+» FDM FEM Nicolson FDM FEM Nicolson
0.2 0.8284 0.8283 0.8283 0.8216 0.8219 0.8230
0.4 0.6456 0.6456 0.6455 0.6341 0.6347 0.6365
0.6 0.4494 04494 0.4492 04372 04377 04397
0.8 0.2360 02360 0.2339  0.2279 0.2283 0.2296

Table 3. A comparison of the results for t = 0.5, 7 = 0.5 and

various f§
B=—-05 f=10
Crank- Crank-
.+ FDM FEM Nicolson FDM FEM Nicolson
0.2 0.7149 0.7156 0.7192  0.8430 0.8431 0.8430
04 04910 04918 04970 0.6717 0.6718 0.6718
0.6 0.3055 0.3060 0.3101 0.4813 0.4815 0.4815
0.8 0.1448 0.1451  0.1469 0.2635 0.2636 0.2636
Tables 1--3. Tt is seen that they are in good agreement

with each other. Four or five iterations are required to
obtain a convergent solution. The CPU time (PC with
80386 microprocessor) needs about 15 s for any spec-
ific dimensionless time.

Example 3 a conductive—convective—radiative fin

This example considers a horizontal straight fin of
length L. cross-scctional area A, and perimeter P
exposed to simultancously free convective and radi-
ative heat transfer on the surface. The boundary con-
ditions of constant base temperature T, and adiabatic
tip are assumed. The convective environment tem-
perature and effective sink temperature are 7T, and
T,, respectively. The density p, specific heat C,, and
surface emissivity £ are taken to be constant while the
thermal conductivity is assumed to be of the form

KTy = ko[t +(T—T))] 27
and the convective heat transfer coefficient £ is
assumed as

h=uT-T) (28)
where A is a constant and p a small parameter (p =

0.25 and 0.33 for laminar and turbulent conditions,
respectively [4]). The dimensionless governing equa-
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tions for this example may be written as
o0 0 08
PRl [(1 +B(0-6,) @]
—&(0—0,)"" —w(0*~07) (29a)
0=1 ate=0 (29b)
o0
-‘j =0 atx=1 {29¢)
Ca
0=0 fort=0 (29d)
where 8 =T/T,, 0,=T,/T,, 0.=TJT,., @ =x/L,

T =kot/L*poCpa, ﬁ =kT,, &= hPL kA, o=
eoTiPL koA, h, = A(T,—T,)". In the following
computation, the case 0, = 0. = 0 is considered.

The application of the FDM to discretize equation
(29a) is straightforward and gives

69

1
o= (0 =20+,

+ ‘~ﬂ-, (0., =202 402 y—E20}tr —wb}.  (30)
Linearizing the non-linear terms in equation (30) by
using equation (9) and then taking the Laplace trans-
form of the linearized equation can yield the following

equation:

(L + 80,00, +[=2=2B0,—1*(E*(1+p)07

4ol =N+ [+ 40 10y = L 2

5 —200+02 )

12
B ?(52/?(71' 43000, (31
However, the application of the FEM, using equa-
tions (4)-(6), is difficult to discretize the convective
and radiative terms in equation (29a). Thus, before
the discretizing procedure, the non-linear terms due
to convection and radiation in the ith element are
firstly linearized into the following forms:
01+ = —p0*7 4+ (1+p)0r0 (32)
and
0% = =307 +4070 33

where 7, is the previously iterated ith node tempera-
ture, and the discretized and transformed form of
equation (29a) given by the hybrid finite-element
method is written as

[Hﬁa (=

+ 22

+{1+ﬁf7,-+|-—%(s+

”1

(5+<:2(1 +p)§”+4w0’)]

1 +P)f7f’+4wf7f3:]5;

(1 +p)or +4(:)(73)} o

= —ﬂ'(a~|

3 20% + ,H)—v(g 2p@1 0 4 3007,

(34)
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FiG. 2. A comparison of the temperature distribution for
f=1.&=1p=033 w =1 and various ©.

Figures 2-5 show thc comparison of the tem-
peraturc distribution within the fin given by the
present hybrid numerical schemes and by the con-
ventional FDM using the Crank—Nicolson algorithm.
It can be seen from these figures that the present
hybrid numecrical solutions agree well with the results
using the Crank-Nicolson algorithm. For the present
hybrid methods, four or five iterations arc nceded to
obtain a convergent solution at a specific dimen-
sionless time. The CPU time (PC with 80386 micro-
processor) is taken as about 15s.

CONCLUSION

The present study applies the hybrid numerical
method involving the Laplace transform technique
and the FEM (or the FDM) to non-linear transient
thermal problems. From the illustrated cxamples, it

0.6

Crank—Nicolson
[a] FES
x FDS

i
0.%6 5 0% 5.6 X} T0
X

FiG. 3. A comparison of the temperature distribution for
S=1.p=033 = = 1.1 =05 and various f§.
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1.08

0.8

Hos

0.4

Crank—Nicolson
=} FES
X FDS

i J. H
035 02 0.4 56 5.8 T.0
x

FiG. 4. A comparison of the temperature distribution for
fi=1.p=033 =1 1=05and various {.

can be seen that the proposed hybrid numerical
method is efficient and accurate to determine the non-
linear transient thermal response within a solid.

To the authors’ knowledge, the solution of # sim-
ultaneous algebraic equations at cach time step is
required when the Crank—Nicolson algorithm is used,
1.e. all the internal temperatures must be calculated at
each time step. This procedure will tend o increase
the cost when the solutions must be carried out over
long-time periods. Furthermore, i1 is often necessary
to take very small time steps to avoid undesirable
numerical oscillations in the solution. This severe limi-
tation on the time step may require an excessive
amount of computer time. The advantage of the appli-
cation of the Laplace transform technique in the pre-
sent method is that it can quickly give an accurate
solution at a specific time without step-by-step com-
putation in the time domain. This advantage is

0.6 Crank—Nicolsen

o FES
X FDS

3 1 i i
035 02 5.4 5.6 X} 70
x

FiG. 5. A comparison of the temperature distribution for
f=1<=1,p=033 1 =05 and various w.
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especially powerful when a long-time solution is
required.

The present study only gives an indication of the

basic procedure of the proposed hybrid numerical
scheme. The procedure as described in the present
study should be applicable to most non-linear tran-
sient problems. The further application of the present
hybrid numerical method to other non-linear tran-
sient problems, such as Navier-Stokes equations and

th
fu

3%

ermoclastic problems, will be discussed in the
ture.
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TECHNIQUE HYBRIDE DE TRANSFORMEE DE LAPLACE POUR LES PROBLEMES
THERMIQUES VARIABLES ET NON LINEAIRE

Résumé—Une méthode numeérique hybride combinant I'application de la transformation de Laplace et la
méthode des différences finies (FDM) ou la méthode des éléments finis (FEM) est présentée pour des
problémes thermiques variables et non linéaires. Le domaine spatial des équations est discrétisé par FDM
ou FEM et les termes non linéaires sont linéarisés par un développement en série de Taylor. Les termes
dépendant du temps sont otés des équations linéarisées par la transformation de Laplace et ainsi les résultats
a un instant donné peuvent &tre calculés sans un calcul pas-a-pas dans le domaine temporel. Quelques
problémes thermiques variables, monodimensionnels, non linéaires sont étudiés pour montrer efficacité
et la precision de la présente méthode.

EINE HYBRIDE LAPLACE-TRANSFORMATION ZUR BERECHNUNG
NICHTLINEARER TRANSIENTER THERMISCHER PROBLEME

Zusammenfassung-—Fiir nichtlineare transiente thermische Probleme wird eine hybride numerische
Methode vorgestellt, bei welcher die Laplace-Transformation mit dem Verfahren der Finiten-Differenzen
(FDM) oder der Finiten-Elemente (FEM) kombiniert wird. Der rdumliche Teil der beschreibenden Differ-
entialgleichung wird durch FDM oder FEM diskretisiert, die nichtlinearen Terme werden mit Hilfe einer
Taylor-Entwicklung linearisiert. Die zeitabhingigen Terme in der linearisierten Gleichung werden durch
Laplace-Transformation auf konstante Terme zuriickgefiihrt, so daB die Temperaturbeurteilung zu einer
bestimmten Zeit ohne schrittweise Berechnungen im Zeitbereich ermittelt werden kann. Zur Demonstration
der Effizienz und Genauigkeit des Verfahrens werden verschiedene eindimensionale nicht lineare transiente
thermische Vorginge untersucht.
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TUEPUJHBIA METOJ ITPEOBPA3OBAHUI JIAIUJIACA ISl PEMIEHUA HEJTMHEWHBIX
HECTAIIMOHAPHBIX TEIUIOBBIX 3ALAY

AnoTauus—J{J1s pElUCHHsT HeNMHEHHBIX HECTAMOHAPHBIX TEIUIOBBIX 3aJai INPEeIUIOKEH T'HOPHIHBIH
YHCAEHHBIH METOJ, COYeTalolMii MeTon npeobGpasoBanuil Jlamnaca M MeTOA KOHEUHBIX pa3sHOCTEH
(MKP) uin xoHeunsix 3nemertos (MKD). [IpocTpancTBenHas 061acth Uis ONPENESIAIOILETO YPABHEHHS
nuckperusnpyercas B MKP uwin MK3, a renuHeliHble ClaraeMple JIHHEAPH3YIOTCA PA3J/IOKEHHEM B psai
Taiinopa. K HecTallHOHAPHBIM CIaTaeMbIM H3 JIHHEAPH3OBAHHBIX YpaBHEHME TPHMEHsETC npeobpa3o-
BanHde Jlanmnaca, H TAKHM 06pa3oM MOryT GBITH NMOJY4EHBI PE3YAbTATEl B KOHKPETHBIH MOMEHT BpEMeHH
6e3 nosTanHeIX BHMHCAEHHE BO BpeMeHHOH obiacTd. JInd wumocTpaunn 3pgeKTHBHOCTH B TOYHOCTH
Ope/UTOKEHHOTO METOHAAa HCCIEAYHOTCA HECKOJIbKO  OJHOMEPHBIX HeJMHEHHBIX HeCTAUMOHAPHBIX
TEMIOBBIX 3a7a4.



