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Abstract-A hybrid numerical method combining the application of the Laptace transform technique and 
the finite-difference method (FDM) or the finite-element method (FEM) is presented for non-linear 
transient thermal problems. The space domain in the governing equation is discretized by FDM OF FEM 
and the non-linear terms are linearized by Taylor’s series expansion. The time-dependent terms are removed 
from the linearized equations by Laplace transformation, and so, the results at a specific time can be 
cdicuhrted without step-by-step computation in the time domain. To show the efficiency and accuracy of 

the present method several one-dimensional non-linear transient thermal problems are studied. 

INTRODUCTION 

IT Is OF great importance in most engineering and 
science applications to analyse the transient thermal 
response within a solid with temperature-dependent 
thermal properties or within a structure subjected to 
a radiative boundary condition. The governing equa- 
tions with either the temperature-dependent thermal 
properties or the radiative boundary condition will 
become nonlinear. Owing to no general mathematic 
theory to analytically solve non-linear partial differ- 
ential equations, various approximate methods [I-6] 
have been published to find approximate solutions. 
To find a more accurate solution, numerical methods 
should be employed. Up to date, the finite-element 
method (FEM), the finite-difference method (FDM), 

and the boundary-element method (BEM) are com- 
monly used. In the application of those numerical 

methods to transient problems, the time derivative 
is often dealt with by the modified Crank-Nicolson 
method [7], the time-integration method [8] or other 
methods [9, lo]. However, the major drawback of 
these methods is that the calculation must be per- 
formed at each time step until the specific time is 
reached and it will cost a great deal of computer time 
to obtain a long-time solution for these methods. 

in the present study, the hybrid application of the 
Laplace transform method and the FEM (or the 
FDM) is used to analyse the non-linear transient heat 
conduction through a solid. This hybrid method has 
been proved to be very powerful for linear transient 
problems [I I, 121. A few works have been carried out 
on the method of the Laplace transform for non-linear 

transient heat conduction problems. Tamma and 
Railkar [13-l 51 applied the hybrid transfinite element 
methodology CO solve non-linear transient problems. 
Based on the assumptions that (I) the thermal prop- 
erties are constant within an element, and (2) the 

element thermal properties depend only on the aver- 
age element temperatures, the thermal-equilibrium 
equations in the transformed domain obtained by 
them are nonlinear. However, these assumptions are 

reasonable for lower order finite elements with simple 

temperature variations [ 161. Based on this reason, the 
present study applies Taylor’s series expansion to lin- 
earize the non-linear terms. It is seen that the thermal- 
equilibrium equations in the transformed domain are 
not nontinear, but linear. Owing to no time step in the 
present hybrid method, the results at a specific time 
can be calculated without iteration at each time step. 
To show the efficiency and accuracy of this hybrid 
method for such problems, three one-dimensional test 
examples consisting of (1) a hollow sphere subjected 

to a conv~tive-radiative boundary condition, (2) a 
slab with temperature-dependent thermal con- 
ductivity and specific heat, and (3) a conductive-con- 
vective-radiative fin with temperature-dependent 
thermal properties are analysed. A comparison of the 
hybrid finite-element method solutions (FES) and the 
hybrid unite-difference solutions (FDS) with the 
results obtained by a conventional finite-difference 
method using the Crank-Nicolson algorithm is made. 
It can be seen that there is no remarkable difference 
between them. 

DESCRIPTION OF THE PROPOSED HYBRID 

SCHEME 

Consider a general one-dimensional transient non- 
linear thermal problem described by the following 
differential equation : 

D(T.x.t) = 0 

with the boundary condition 

B(T,x,t) = 0 

and the initial condition 

in 0 (1) 

on R (2) 

I(T,x,O) = 0 (3) 

where D and B are non-linear differential operators, 
R the domain of the problem and [w its boundary. 

The application of the present hybrid numerical 
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NOMENCLATURE 

A cross-sectional area of the tin I time 

B boundary differential operator I, specific time 

Bi Riot number I’, 11 free parameters 

1, thickness of the slab .\’ space coordinate 

%((I) dimensionless specific heat I dimensionless space coordinate. 

C ,‘,I reference specific heat at T = 0 

D transient conduction differential Greek symbols 
opcratol 

D* non-linear algebraic equation 
!I temperature coefficient for the thermal 

D linearized algebraic equation 
conductivity 

., 
0 Laplacc transformed algebraic equation ’ 

temperature coefficient for the specific 

heat 
I.i’) global force vector 5: 
I1 heat transfer coefficient 

cmissivity 

(I 
I initial condition 

dimensionless temperature 

Ii 
X((I) dimensionless thermal conductivity 

constant in equation (26) 
i constant in equation (27) 

[K] global conduction matrix 
k(T) thermal conductivity 

f tin paramctcr 

k,, reference thermal conductivity at T = 0 
/’ density 

(i Stefan-Boltzmann constant 
L length of the fin 5 dimensionless time 
I distance between two nodes (‘) reference thermal diffusivity ratio, 
N pyramid function 
n total number of nodes 

%,.‘%! 
R domain of the problem. 

P perimeter of the fin cross-section 

P parameter in the free convective heat 

transfer coefficient Other symbols 

R real domain or = R,, - R, R boundary of the problem 

R, inner radius of the hollow sphere 3 tolerance error. 

R<, outer radius of the hollow sphere 

I radius of the sphere Subscripts 

? dimensionless radius -/;,a environment 

s Laplacc transform parameter b fin base 

T tcmperaturc c effective sink 

T previous iterative temperature i ith node 

F Laplacc transformed temperature i jth node 

(T! global temperature vector W wall. 

method to tind the solution of equations (l)-(3) can 
be divided into the following steps. 

(I) Discretize the governing equation 
Equations (I) and (2) can bc discretizcd tither by 

the Galerkin finite-element method which approxi- 
mates the temperature distribution T on the interval 

].y, , , _\‘,+ ,] as 

T(.Y.t) = N, ,(.\‘)T, ,+N,(.v)T,+N,, ,(.r,T,+, (4) 

where N,(.I-). k = j- I. j. j+ I are the pyramid func- 
tions defined by 

0 elsewhere 

and 1 denotes the distance between two nodes and 

gives the discretized heat conduction equation in the 

form 

D( T, .Y, t) N, d.y = 0 (6) 

or by the finite-difference method. After discretizing 
the governing equations, the following set of non- 
linear algebraic equations can be obtained : 

D*(T,,,.c,.f) =0 j= 1.2 ,..., n-1.~ (7) 

where n is the total number of nodes and d is defined 

as 

1 
I,2 when ,j = I 

rl= ,j-l.j.j+l when ,j = 2.3, 1 n - I (8) 

n- 1.H when ,j = n 

(2) Linearize the non-linear terms 
The application of the Laplace transform technique 
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is only restricted to the linear system, so that the non- 
linear terms in equation (7) must be linearized. In the 

present study, Taylor’s series expansion is applied to 
linearize the non-linear terms. Let ,f’(q!, q2,. . . , q,,,) 
be a many-times differentiable non-linear function of 

q,, y/?. , and q ,,,. Then its Taylor’s series expansion 
is given as 

where the overbar denotes the previously iterated 
solution. Substituting equation (9) into equation (7) 

can yield the following linear algebraic equations : 
- _ 
WT,,, r,, -y,, t) = 0. (10) 

(3) Remove the time-dependent terms 
In order to remove the time-dependent terms from 

equation (IO), the Laplace transform technique is util- 
ized. The Laplace transform of a real function s(t) 
and its inversion formula are defined as 

g(s) = Y[g(r)] = 
I 

’ e “g(r) dt (11) 
0 

and 

where s = t’+i~‘, z), WE R. 
The transformed form of equation (IO) can be writ- 

ten as 

0( ?<J, ii,, f;, s) = 0. 

(4) Solve the transformed equation 

(13) 

Equation (I 3) is a vector--matrix form equation of 
the following type : 

[K] (F) = {,f) (14) 

where [K] is an (n xn) band matrix with complex 
numbers. {r) an (n x I) vector representing the trans- 
formed nodal temperature and {_fi an {B x 11 vector 
representing the forcing terms. Note that equation 

(14) is a linear equation. An initial temperature dis- 
tribution 7(.x, t,) at the specific time t, is guessed and 
then [K] and {.fl can be calculated. The double direct 
Gaussian-elimination algorithm is used to solve {F) 
and the numerical inversion of the Laplace transform 
lechnique 117-l 93 is applied to invert the transformed 
result to the physical quantity {T). These updated 
values of (TI arc used to calculate {XI) and {n for 
iteration. This computational procedure is performed 
repeatedly until a desired convergence is achieved. 
Equation (14) derived by Tamma and Raiikar [ l3- 
IS] is nonlinear. They solved the system of non-linear 
equations using the Newton-Raphson method. 
According to the comment of Shih [20], the Newton- 
Raphson method converges rapidly if the initial guess 
lies within the vicinity of the solution. It will diverge, 

however, if the starting solution cannot be well 
guessed. 

.An iterative solution is said to be convergent if 

lTk--T”+‘[ 
+.T~----< 3 as.i= I,2 ..,,, n (15) 

where the superscript k denotes the kth iteration and 
3 the tolerance error. In the present study. the first 
iteration values of T, are set to zero and the tolerance 
error 3 is chosen as 10-j. 

ILLUSTRATIVE EXAMPLES 

In the following, three kinds of examples are studied 
to illustrate the applicability of the present hybrid 
numerical method to non-linear transient thermal 
problems. In each example, the 11 -node modelling is 
used for both FDM and FEM and the numerical 
inversion of the Laplace transform proposed by 
Honig and Hirdes [19] is employed. The comparative 
results are obtained by the conventional finite-differ- 

ence method using the Crank-Nicolson algorithm. To 
obtain more accurate comparative results, 21 nodes 
and a time step AI = 0.01 are chosen. All the 
computation is performed on a PC with an 80386 

microprocessor and the program is written in 
FORTRAN. 

In some engineering applications, hollow-spherical 
structures such as reservoirs are used and a con- 
vective-radiative heat transfer usually occurs between 
the structure surface and the environment. This exam- 
ple studies a hollow sphere with constant thermal 
properties which is subjected to a convective-radiative 
boundary condition at the outer surface. The dimen- 

sionless form of the governing equations describing 
the transient thermal response of the sphere is given 

by 

(lba) 

0 = 0 at z = .B, (16b) 

f?o 
-=~(l-U~)f~?i(l-0) att=.#<, (16~) 
21 

O=O ats=O (16d) 

where 0 = T/T., , 1 = r/(R,- R,) = r/R, x = k,,r/ 

R~~“~“~~, 2, = RJR, $, = R-/R, w = RzaT;/k,, 
Bi = R~f/k”, R, is the inner radius, R,, the outer radius, 
and T,_ the environment temperature. Equations 
(16) can be solved by the scheme described in 
the above section and the non-linear term shown in 
equation (I 6c) is linearized as 

0: = 4J@,, - 30,: (17) 

where & denotes the previously iterated temperature 
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- Crank-Nicolson 

e 

at p = ti,,. Figure I shows a comparison of the prcscnt 
hybrid numerical solutions with the results given 
by the finite-difference method using the Crank- 
Nicolson algorithm for the case .#, = 0.5, .8<, = 1.5. 
to = 1, and Bi = 1. It can be seen that there is no 
remarkable difference between them. Moreover. the 
iteration is needed only at the outer-surface tem- 
pcrature at the specific time. The iterative procedures 
are finished until the desired convergence is reached. 
Howcvcr, the application of the Crank-Nicolson 
algorithm must iterate all the nodal values within the 

solid at each time step. In the present computation, 
four or five iterations are needed. The CPU time (PC 
with 80386 microprocessor) takes about 5 x to obtain 
a convergent solution for any specilic dimensionless 
time. 

This example considers a single slab with tem- 
perature-dependent thermal conductivity and specific 
heat. The dimensionless form of the governing equa- 
lions are given ilb 

II = I at ./ = 0 (18b) 

II = 0 at f’ = I (18c) 

0 = 0 at z = 0 (lgd) 

where 0 = T/T,,, .I’ = .v:‘h. T = k,,r/h’p,,~‘,,,,, h is the 
thickness of the slab, and T, the wall temperature. 
The linear variation of the thermal conductivity and 
specific heat with temperature is assumed and they 
can be expressed as 

‘G(U) = I +;d and .X(0) = I +/RI. (19) 

xnd J.-Y. LIN 

Applying the FDM to the right-hand side of equation 
( I&) gives 

::[(l+iio)jj)]=~~(o, ,-20,+0,,,) 

+ $ (a’ / -7o;+o;+ ,). (20) 

The non-linear terms OL can be linearized, using cqua- 
tion (9). into the following form : 

1)2 = m-0’. (21) 

The Icft-hand side of equation (lb) can be linearized 
by the following process : 

~~iu,~~=~~[J:ri(rr)d,i]=~~[h(ii)l (22) 

where E(0) is a non-linear function. Then E(O) can 

be linearized. using equation (9), into the following 
form : 

Substituting equation (23) into equation (22) yields 
the lincarizcd form as 

X(O) 
21 

= $5 (0) 
if1 

& (‘z 
(24) 

Thus. by the present hybrid FDM. equation (l&l) 

can bc written as 

When the hybrid FEM is used. equation (I&I) is 
cxprcssed as 

L 
,I?(l+ictr ,)-;(l+yQ 

I i 
6 ,+ 112 ( I + /IO! ) 

-‘,‘(l+~cr) li;+ Ii ;~Il+/&-;(l+~&) ci;,, 
1 

= 2+ , -2fl,‘+fi;+,). (26) 

The comparison of the present numerical solutions 
with the results given by the finite-difference method 
using the Crank-Nicolson algorithm is shown in 



Hybrid Laplace transform technique for non-linear transient thermal problems 1305 

Table I, A comparison of the results for 4 = 0.5, /I = 1 .O and 
various T 

__ 

T =O.I r= 1.0 
Crank--- Crank- 

.,’ FDM FEM Nicolson FDM FEM Nicolson 
_-__ -- 

0.2 0.7341 0.7348 0.7337 0.8439 0.8439 0.8439 
0.4 0.4710 0.471X 0.4705 0.6733 0.6733 0.6733 
0.6 0.2510 0.2509 0.2513 0.4832 0.4832 0.4832 
0.8 0.0993 0.0986 0.1003 0.2649 0.2649 0.2649 

Table 2. A comparison of the results for r = 0.5. [J = 0.5 and 
various ;I 
_---- 

;’ = -0.5 7 = I.0 
Crank- Crank- 

., FDM FEM Nicolson FDM FEM Nicolson 
--- 

0.2 0.8284 0.8283 0.8283 0.8216 0.8219 0.8230 
0.4 0.6456 0.6456 0.6455 0.6341 0.6347 0.6365 
0.6 0.4494 0.4494 0.4492 0.4372 0.4377 0.4397 
0.8 0.2360 0.2360 0.2359 0.2279 0.2283 0.2296 

_--...-. 

Table 3. A comparison of the results for T = 0.5, ;’ = 05 and 
various /S 

______.. 

p = -0.5 p= I.0 
Crank Crank-- 

I’ FDM FEM Nicolson FDM FEM Nicolson 
..~ ~ .._..- 

0.2 0.7149 0.7156 0.7192 0.8430 0.8431 0.8430 
0.4 0.4910 0.4918 0.4970 0.6717 0.6718 0.6718 
0.6 0.3055 0.3060 0.3101 0.4813 0.4815 0.4815 
0.8 0.1448 0.1451 0.1469 0.2635 0.2636 0.2636 

Tables I--3. It is seen that they are in good agreement 
with each other. Four or five iterations are required to 
obtain a convergent solution. The CPU time (PC with 
80386 microprocessor) needs about I5 s for any spec- 
ific dimensionless time. 

This example considers a horizontal straight fin of 
length L. cross-sectional area A. and perimeter P 
exposed to simultaneously free convective and radi- 
ative heat transfer on the surface. The boundary con- 
ditions of constant base temperature Tb and adiabatic 
tip are assumed. The convective environment tem- 
pcrature and effective sink temperature are T,, and 
7;, respectively. The density p, specific heat C,, and 
surface emissivity I: are taken to he constant while the 
thermal conductivity is assumed to be of the form 

A-(T) = k,,]l + k.( T- T.,)] (27) 

and the convective heat transfer coefficient /Z is 
assumed as 

h = >.( T- r,)” (28) 

where i is a constant and p a small parameter (p = 
0.25 and 0.33 for laminar and turbulent conditions, 
respectively [4]). The dimensionless governing equa- 

tions for this example may be written as 

-~2(u-oJ’+~ -w(P - 02) (29a) 

0 = I at .E = 0 (29b) 

!V = 0 
a:, 

at ). = 1 (29~) 

O=O forr=O (29d) 

where D = TIT,, 0, = TJT,, 0, = TJT,, CI‘ =x/L, 

5 = k,,t/L’p,C,,,, fl= KT,,, 5’ = h,PL2ikoA, w = 

mT2 PL2/koA, h,, = i( T,- TJP. In the following 
computation, the case 0, = 0, = 0 is considered. 

The application of the FDM to discrctize equation 
(29a) is straightforward and gives 

(30) 

Linearizing the non-linear terms in equation (30) by 
using equation (9) and then taking the Laplace trans- 
form of the linearized equation can yield the following 
equation : 

-4wtT:-s)]15;+[1+B~+,]~+, =;(@.,-20;+&) 

-;(~~~(T1+i.+3D)0:). (31) 

However, the application of the FEM, using equa- 
tions (4)-(6), is di~~ult to discretize the convective 
and radiative terms in equation (29a). Thus, before 
the discretizing procedure, the non-linear terms due 
to convection and radiation in the ith element are 
firstly linearized into the following forms : 

(I’+‘> = -pOj+“+(l +p)&v (32) 

and 

04 = -3~~+4~~ (33) 

where 0, is the previously iterated ith node tempera- 
ture, and the discretized and transformed form of 
equation (29a) given by the hybrid finite-element 
method is written as 
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- Crank-Nicolson 

n FES 

x FDS 

I / I / 

0.2 0.4 0.6 0.8 

x 

Figures 2%5 show the comparison of the tem- 
perature distriblltion within the fin given by the 
present hybrid numerical schemes and by the con- 
vcntional FDM using the Crank-Nicolson algorithm. 
It can be seen frotn these figures that the present 
hybrid numerical solutions agree well with the results 
using the Crank-Nicolson algorithm. For the present 
hybrid methods, four or five iterations arc ncedcd to 

obtain a convergent solution at a specific dimen- 
sionless time. The CPU time (PC with 803% mict-o- 
processor) is taken as about I5 s. 

CONCLUSION 

The present study applies the hybrid numerical 
method involving the Laplace transform tcchniquc 
and the FEM (or the FDM) to non-linear transient 
thermal problems. From the illustrated cxamplcs, it 

0.8 

e 

0.7 

0.8 

0.4 

0.t 

can be seen that the proposed hybrid numerical 
method is efficient and accurate to determine the non- 
linear transient thermal response within a solid. 

To the authors’ knowledge, the solution of II sim- 

ultaneous algebraic equations at each time step is 
required when the Cr~~nk~~i~~~lst~t~ ~~gol-i~llln is used, 
i.e. all the internal temperatures must be calculated at 
each time step. This procedure will tend to incrcasc 
the cost when the solutions must be carried out over 
long-time periods. Furthermore. it is often ncccssary 
to take very small time steps to avoid undcsirablc 
numerical oscillations in the solurion. This scvcrc Iimi- 
tation on the time step may require an euccssivc 
amount orcomputcr time. The advantage orthe a&i- 
cation of the Lapluce transform technique in the prc- 
sent method is that it can quickly gi\e an accurate 
solution at a specific time without step-by-step com- 
putation in the time dom:Gn. This advantage is 

0.9 

0.8 

e 

0.7 

0.6 

4 

- Crank-Nicolson 

FES 

FDS 

FIG. 5. A comparison of the trmpsraturc distribution for 
ii = I, f = I,,> = 0.33. r = 0.5 and various 181. 
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especially powerful when a long-time solution is 

required. 
The present study only gives an indication of the 

basic procedure of the proposed hybrid numerical 
scheme. The procedure as described in the present 
study should be applicable to most non-linear tran- 
sient problems. The further application of the present 
hybrid numerical method to other non-linear tran- 
sient problems. such as Navier-Stokes equations and 
thermoclastic problems. will be discussed in the 
future. 
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TECHNIQUE HYBRIDE DE TRANSFORMEE DE LAPLACE POUR LES PROBLEMES 
THERMIQUES VARIABLES ET NON LINEAIRE 

R&sum&Une mtthode numerique hybride combinant I’application de la transformation de Laplace et la 
methode des differences finies (FDM) ou la methode des elements finis (FEM) est presentee pour des 
probltmes thermiques variables et non lintaires. Le domaine spatial des equations est disc&is& par FDM 
ou FEM et les termes non lin&aires sont linearises par un dtveloppement en serie de Taylor. Les termes 
d&pendant du temps sont otts des equations linearisees par la transformation de Laplace et ainsi les rt’sultats 
a un instant donne peuvent etre caicules sans un calcul pas-a-pas dans le domaine temporel. Quelques 
problemes thermiques variables, monodimensionnels, non lineaires sont etudits pour montrer I’efficacite 

et la precision de la presente methode. 

FINE HYBRIDE LAPLACE-TRANSFORMATION ZUR BERECHNUNG 
NICHTLINEARER TRANSIENTER THERMISCHER PROBLEME 

Zusammenfassung--Fir nichtlineare transiente thermische Probleme wird eine hybride numerischc 
Methode vorgestellt. bei welcher die Laplace-Transformation mit dem Verfahren der Finiten-Differenzen 
(FDM) oder der Finiten-Elemente (FEM) kombiniert wird. Der raumliche Teil der beschreibenden Differ- 
entialgleichung wird durch FDM oder FEM diskretisiert, die nichtlinearen Terme werden mit Hilfe einer 
Taylor-Entwicklung linearisiert. Die zeitabhangigen Terme in der linearisierten Gleichung werden durch 
Laplace-Transformation auf konstante Terme zuriickgefiihrt, so daB die Temperaturbeurteilung zu einer 
bestimmten Zeit ohne schrittweise Berechnungen im Zeitbereich ermittelt werden kann. Zur Demonstration 
der Effizienz und Genauigkeit des Verfahrens werden verschiedene eindimensionale nicht lineare transiente 

thermische Vorgange untcrsucht. 
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I-MI;PMfiHbIfi METOA FIPEOPPA30BAHHti JIAIIJIACA AJIR PEBIEHHII HEJIMHERHbIX 
HECTAqMOHAPHbIX TEl-IJIOBbIX 3A&4’-I 

.bUOT~QHSl-&I5l ~IU‘?H&M Hen&WeiiHblX HeCTaUHOHapHbIX TeIInOBbIX 3aAa'l EIpeAnOmeH IJl6pHnH‘d-f 
'IHCnCHHbIi? MeTOA, CO'ieTaEOI&i MeTOA npeO6pa30BaHHii naIInaCa A MeTOA KOHeYHbIX pa3HOCTei? 

(MKP)UnU KOHeSHbIX SIeMeHTOB(MK3). npOCTpaHCTBeHHaS o6nacTbJtnr OnpeAenmOIUerO ypaBHeHBI 

AecKpeTA3wpyeTcr B MKP lint4 MK~, a HenaHeiiHbIe cnaraeMbIe neHeapH3ymTca pa3nowtewieM B pm 

T3Bnopa. K HecTaqwoHapHbIM CnaraeMMM ~3 nSiHeapH30BaHIibIX ypaBHeHd IIpHMeHKeTCSI npeo6pa3o- 

BaHHe naIInaCa,u TaKHM o6pa3oM MOryT 6blTb IIOnyYeHbI pe3ynbTaTbI B KOHKpeTHbIii MOMeHT BpeMeHti 

6e3 n03TanHblx sbrwicnemii 80 BpeMeHHofi o6nacTa. ll.m mnmcTpaum z+#KTHBHoCT~ B TO~HOCTB 

qwuIomeHHoro MeTOAa nccneAymTcn HeCKOnbKO OAHOMepHbIX HenHHefiHbIX HeCTaUl,OHapHbIX 

Te"nOBbIX3aAaY. 


